Newton maps: fractals from Newton's method for the circle map

نویسنده

  • Julyan H. E. Cartwright
چکیده

To understand why two interacting oscillators synchronize with each other, or lock together and resonate at some rational frequency ratio, dynamical-systems theory shows that one should study circle maps and their periodic orbits. One can easily explore the structure of these periodic orbits using Newton maps, derived from Newton’s method for finding the roots of an equation. I present here some interesting and beautiful examples of fractals encountered in Newton maps while investigating the periodic orbits of circle maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newton maps for quintic polynomials

The purpose of this paper is to study some properties of the Newton maps associated to real quintic polynomials. First using the Tschirnhaus transformation, we reduce the study of Newton’s method for general quintic polynomials to the case f(x) = x − c x + 1. Then we use symbolic dynamics to consider this last case and construct a kneading sequences tree for Newton maps. Finally, we prove that ...

متن کامل

From Newton's method to exotic basins Part II: Bifurcation of the Mandelbrot-like sets

This is a continuation of the work Ba] dealing with the family of all cubic rational maps with two supersinks. We prove the existence of a parabolic bifurcation of the Mandelbrot-like sets in the parameter space. Starting from a Mandelbrot-like set in cubic Newton maps and changing parameters in a continuous way, we obtain a parabolic Mandelbrot-like set contained in the family of maps with a x...

متن کامل

A characterisation of Newton maps

Conditions are given for a Ck map T to be a Newton map, that is, the map associated with a differentiable real-valued function via Newton’s method. For finitely differentiable maps and functions, these conditions are only necessary, but in the smooth case, i.e. for k = ∞ , they are also sufficient. The characterisation rests upon the structure of the fixed point set of T and the value of the de...

متن کامل

On Singularity and Non - Proper Value Set of Polynomial Maps Of

Some properties of the relation between the singular point set and the non-proper value curve of polynomial maps of C are expressed in terms of Newton-Puiseux expansions.

متن کامل

A Combinatorial Classification of Postcritically Fixed Newton Maps

We give a combinatorial classification for the class of postcritically fixed Newton maps of polynomials and indicate potential for extensions. As our main tool, we show that for a large class of Newton maps that includes all hyperbolic ones, every component of the basin of an attracting fixed point can be connected to ∞ through a finite chain of such components.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Graphics

دوره 23  شماره 

صفحات  -

تاریخ انتشار 1999